Паспорт ДП.1.00 ПС Руководство по эксплуатации ДП.1.00.РЭ

Динамический плотномер модификаций

Определение качества уплотнения асфальтобетона и грунта

Содержание

1. Паспорт	3
1.1 Назначение прибора	3
1.2 Технические характеристики	3
1.3 Комплект поставки	3
1.4 Гарантийные обязательства	4
1.5 Свидетельство о приемке	4
2. Руководство по эксплуатации	5
2.1 Устройство прибора	5
2.2 Подготовка к испытаниям	6
2.3 Проведение испытаний	6
2.4 Меры безопасности	7
2.5 Техническое обслуживание, хранение и эксплуатация	7
Приложение 1	7
Приложение 2	11
Приложение 3	13
Приложение 4	14

1. Паспорт

1.1 Назначение прибора

Динамические плотномеры модификаций ДПА и ДПУ предназначены для определения степени уплотнения горячих песчаных и мелкозернистых асфальтобетонных смесей в процессе их уплотнения и через 1-3 суток после окончания работ.

Прибор рекомендован к применению для асфальтобетонов с содержанием щебня не более 40%.

Динамический плотномер модификации ДПУ также позволяет определить степень и контролировать качество уплотнения грунта и других сыпучих материалов, например песка, почвы, а также дополнительных слоев оснований автомобильных дорог, аэродромов, согласно СП 78.13330.2012.

1.2 Технические характеристики

Наименование характеристики	Значение
Масса гири, г	2500 ±25
Высота падения гири, мм	300 ±3
Параметры малого конуса: Угол при вершине конуса, ° Высота конуса, мм	30 18
Параметры большого конуса: Угол при вершине конуса, ° Высота конуса, мм	30 30
Длина стержня, мм*	300 ±3
Диапазон измерения коэффициента уплотнения асфальтобетона	(0,93 ÷ 1,00)
Тип прибора	переносной
Масса прибора в упаковке, кг, не более	4
Примечание: * Для модификации ДПУ	

1.3 Комплект поставки

Наименование	Количество
Направляющий стержень с рукоятью	1 шт.
Ударная гиря	1 шт.

Наковальня	1 шт.
Ограничитель с затворным устройством	1 шт.
Конус большой	2 шт.
Конус малый	2 шт.
Чехол	1 шт.
Паспорт (руководство поэксплуатации)	1 экз.
Стержень с наконечником*	1 шт.
Примечание : * Для модификации ДПУ	

1.4 Гарантийные обязательства

- Гарантийный срок составляет 12 месяцев со дня продажи;
- Дата продажи указана в п. 1.5;
- Неисправности прибора, возникшие в процессе эксплуатации в течении всего гарантийного срока, будут устранены сервисным центром компании RGK;
- Заключение о гарантийном ремонте может быть сделано только после диагностики прибора в сервисном центре компании RGK.

Гарантия не распространяется на дефекты, возникшие в случаях нарушения паспортных режимов хранения и эксплуатации.

Все споры, возникающие в процессе исполнения гарантийных обязательств, разрешаются в соответствии с действующим законодательством РФ.

2. Руководство по эксплуатации

2.1 Устройство прибора

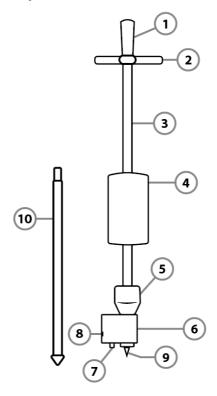


Рис. 1 Общий вид прибора

- 1. Наконечник
- 2. Ручка-ограничитель высоты подъема гири
- 3. Направляющая штанга
- 4. Ударная гиря
- 5. Наковальня
- 6. Ограничитель
- 7. Пружинный затвор
- 8. Фиксирующий стержень
- 9. Конус
- 10. Стержень с наконечником* *Для модификации ДПУ

2.2 Подготовка к испытаниям

2.2.1 Определение степени уплотнения асфальтобетона

- 1. Если температура асфальтобетона находится в пределах от $+50^{\circ}$ C до $+60^{\circ}$ C в основание затвора установить большой конус.
- 2. Если температура асфальтобетона находится в пределах $(20 \pm 2)^{\circ}$ C в основание затвора установить малый конус.

2.2.2 Определение степени уплотнения грунта

- 1. Провести классификацию грунта, согласно ГОСТ 25100-2020 п. 5.
- 2. Для связных грунтов определить относительную влажность.
- 3. Соединить стержень с наконечником (10) с направляющей штангой (3) при помощи наковальни (5).

2.2.3 Тарировка плотномера

- 1. Графики усредненного коэффициента уплотнения можно использовать при условии отсутствия резкого расхождения между результатом определения степени уплотнения, полученным испытанием вырубок (кернов) асфальтобетона по ГОСТ 12801 и определенных плотномером.
- 2. Определить плотность асфальтобетонного слоя плотномером после укладки, после предварительного и окончательного уплотнения. Для каждого измерения 3 5 точек.
- 3. На каждой точке определить плотность асфальтобетона по ГОСТ 12801.
- 4. Построить график зависимости, который в дальнейшем использовать для определения уплотнения для данного типа асфальтобетона.

2.3 Проведение испытаний

2.3.1 Определение степени уплотнения асфальтобетона

- 1. Установить прибор вертикально так, чтобы продольная ось рабочего органа располагалась вдоль дороги.
- 2. Гирю (4) поднять вверх до ручки-ограничителя (2) и отпустить.
- 3. Удары (считая их количество) продолжать до тех пор, пока не сработает автоматическое устройство, отмечающее полное заглубление конуса в поверхность асфальтобетона (состоит из пружинного затвора и фиксирующего стержня).
- 4. По графику для соответствующего асфальтобетона определить значение коэффициента уплотнения (Купл).

2.3.2 Определение степени уплотнения несвязных грунтов и связных, с определением относительной влажности*

- 1. Определить площадку размерами не менее 40х40 см.
- 2. Снять верхний слой грунта на глубину 3-5 см и выровнять площадку.

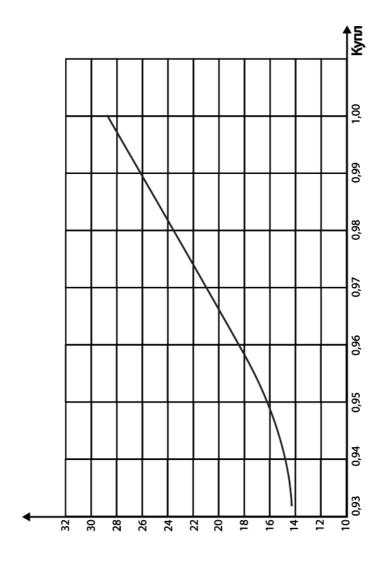
- 3. Установить плотномер вертикально к поверхности.
- 4. Ударами гири погрузить стержень с наконечником на глубину 10 см. Количество ударов при погружении не учитывается.
- 5. Продолжить погружение стержня при помощи гири на глубину с 10 см до 20 см по рискам на стержне, считая количество ударов (n) об наковальню. Результаты измерения записываются в журнал.
- 6. Извлечь прибор из грунта с помощью ручки.
- 7. На каждой площадке проводится не менее трех пенетраций, расстояние между точками измерений должно быть не менее 30 см.
- 8. Вычислить среднее значение показаний.
- 9. По графику для соответствующего грунта определить значение коэффициента уплотнения (Купл).
 - *Для модификации ДПУ

2.4 Меры безопасности

Соблюдать осторожность при работе с падающим грузом.

2.5 Техническое обслуживание, хранение и эксплуатация

- 1. По окончании работы прибор необходимо отчистить от остатков асфальтобетона, разобрать и убрать в чехол.
- 2. Не допускать механических повреждений.
- 3. Для исправной и бесперебойной работы прибор следует периодически осматривать, проверять и при необходимости проводить ремонтные работы.
- 4. Аттестацию рекомендуется проводить с периодичностью не реже одного раза в год. *
 - *В соответствии с ГОСТ Р 8.568-97 п 5.6 подразделения, проводящие испытания на данном оборудовании, могут самостоятельно разработать программу и методику аттестации.


Приложение 1 (справочное)

Усредненные графики определения коэффициента уплотнения асфальтобетона.

- График 1 отражает зависимость коэффициента уплотнения от количества ударов гири при использовании малого конуса, при t=20°C, через 1 3 суток после укладки плотного асфальтобетона;
- График 2 отражает зависимость коэффициента уплотнения от количества ударов гири при использовании малого конуса, при t=20°C, через 1 – 3 суток после укладки высокопористого асфальтобетона;

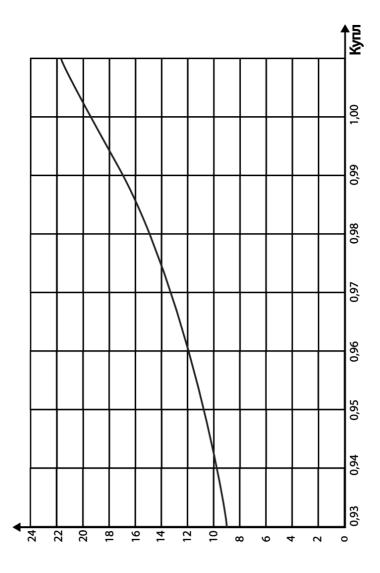

• График 3 отражает зависимость коэффициента уплотнения от количества ударов гири при использовании большого конуса, если температура асфальтобетона находится в пределах от 50°C до 60°C.

График 1

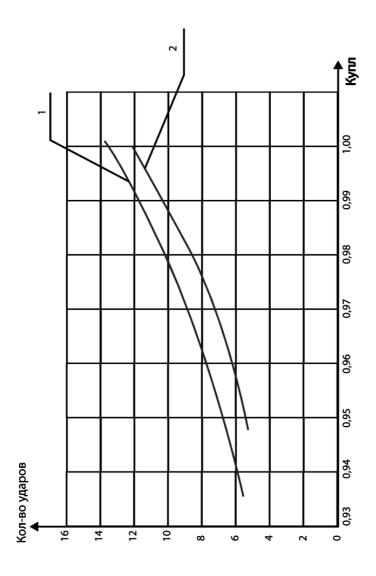

Определение коэффициента уплотнения для плотного асфальтобетона при $t=20^{\circ}\text{C}$, через 1 – 3 суток

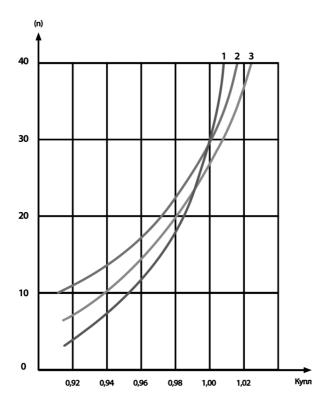
График 2

Определение коэффициента уплотнения высокопористого асфальтобетона при $t=20^{\circ}\text{C}$, через 1 – 3 суток

График 3

Определение коэффициента уплотнения для песчаного и мелкозернистого асфальтобетона при температуре от 50° C до 60° C

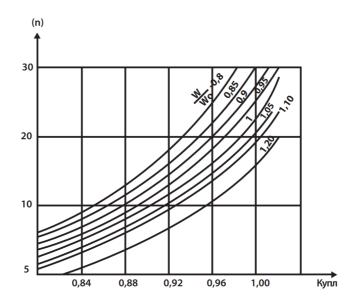
- 1. Песчаный асфальтобетон тип "Г"
- 2. Мелкозернистый асфальтобетон тип "В"

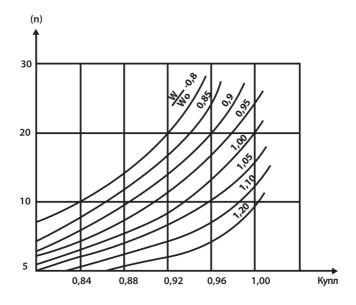

Приложение 2 (справочное)

Усредненные графики определения коэффициента уплотнения грунтов в зависимости от количества ударов необходимых для погружения стержня с наконечником на глубину с 20 до 30 см.

Классификация грунта проводится в соответствии с ГОСТ 25100-2020.

- График 4 отображает зависимость коэффициента уплотнения грунта от количества ударов необходимого для погружения стержня на глубину с 10 до 20 см для несвязных грунтов без определения влажности;
- График 5 отображает зависимость коэффициента уплотнения грунта от количества ударов необходимого для погружения стержня на глубину с 10 до 20 см для связных грунтов после определения относительной влажности;


График 4


Определение коэффициента несвязных грунтов:

- песок средней крупности и крупный (1);
- песок пылеватый (2);
- песок мелкий (3).

График 5Определение коэффициента уплотнения супесей (а)

Определение коэффициента уплотнения суглинков (б)

Приложение 3 (справочное)

В соответствии с СП 78.13330.2012, п 12.5.3, коэффициенты уплотнения конструктивных слоев дорожной одежды должны быть не ниже:

- 0,99 для высокоплотного асфальтобетона из горячих смесей, плотного асфальтобетона из горячих смесей типов A и Б;
- 0,98 для плотного асфальтобетона из горячих смесей типов В, Г и Д, пористого и высокопористого асфальтобетона;
- 0,96 для асфальтобетона из холодных смесей.

Приложение 4. СП 34.13330.2012 (справочное).

Элементы	Глубина распо-	На	именьший кс	эффициент) дорожнь	ициент уплотнения г дорожных работ	Наименьший коэффициент уплотнения грунта при типе дорожных работ	пе
земляного	от поверхности		Капитальном		Облегче	Облегченном и переходном	ходном
	покрытия, м	1	III'III	IV, V	ı	III 'II	IV, V
Рабочий стол	до 1,5	960-86′0	1,0-0,98	0,98-0,95	0,95-0,93	96'0-86'0	0,95
Неподтопляемая	свыше 1,5 до 6	86'0-56'0	56'0	0,95	0,93	56'0	6′0
часть насыпи	свыше 6	56'0	86′0	96'0	66'0	56'0	6′0
Подтопляемая	свыше 1,5 до 6	56'0-96'0	56'0-86'0	96'0	6,0-36,0	56'0	96'0
часть насыпи	свыше 6	96'0	86′0	86'0	96'0	56'0	96'0
В рабочем слое выемки ниже	до 1,2	-	<u> 56</u> ′0	1	1	76'0-56'0	-
зоны сезонного промерзания	до 0,8	-	-	0,95-0,92	1	ı	0,9
Примечание:							

Примечание:

Большие значения коэффициента уплотнения грунта следует принимать при цементобетонных покрытиях и цементогрунтовых основаниях, а также при дорожных одеждах облегченного типа, меньшие значения - во всех остальных случаях. 1.В районах поливных земель при возможности увлажнения земляного полотна требования к плотности грунта для всех типов дорожных одежд принимают такими же, как указано в графах для дорожно-климатических зон II и III.

2. Для земляного полотна, сооружаемого в районах распространения островной высокотемпературной вечной мерзлоты, коэффициенты уплотнения принимают как для дорожно-климатической зоны II.

